Adjust the boxplots bounding fences using medcouple to flag suspicious outliers.
Source:R/outliermethods.R
adjustboxplots.Rd
Adjust the boxplots bounding fences using medcouple to flag suspicious outliers.
Usage
adjustboxplots(
data,
var,
output = "outlier",
a = -4,
b = 3,
coef = 1.5,
pc = FALSE,
pcvar = NULL,
boot = FALSE
)
Arguments
- data
dataframe
. Dataframe to check for outliers.- var
string
. Environmental predictor considered in flagging suspicious outliers.- output
string
Either clean: for dataframe with no suspicious outliers or outlier: to return dataframe with only outliers.- a
numeric
. Constant for adjusted boxplots.- b
numeric
. Constant for adjusted boxplots.- coef
numeric
. Constant for adjusted boxplots.- pc
Whether principal component analysis will be computed. Default
FALSE
- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1
- boot
Whether bootstrapping will be computed. Default
FALSE
References
Hubert M, Vandervieren E. 2008. An adjusted boxplot for skewed distributions. Computational Statistics and Data Analysis 52:5186-5201.
Examples
if (FALSE) { # \dontrun{
data("efidata")
gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = gbd, raster= wcd , lat = 'decimalLatitude', lon= 'decimalLongitude',
colsp = 'speciescheck',
bbox = db,
minpts = 10)
adout <- adjustboxplots(data = refdata[['Salmo trutta']], var = 'bio6', output='outlier')
} # }