Distribution boxplot
Usage
distboxplot(
data,
var,
output,
p1 = 0.025,
p2 = 0.975,
boot = FALSE,
pc = FALSE,
pcvar = NULL
)
Arguments
- data
Dataframe or vector where to check outliers.
- var
Variable to be used for outlier detection if data is not a vector file.
- output
Either clean: for clean data output without outliers; outliers: for outlier data frame or vectors.
- p1, p2
Different pvalues for outlier detection
Schwertman et al. 2004)
.- boot
Whether bootstrapping will be computed. Default
FALSE
- pc
Whether principal component analysis will be computed. Default
FALSE
- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1
Examples
if (FALSE) { # \dontrun{
data("efidata")
gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = gbd, raster= wcd , lat = 'decimalLatitude', lon= 'decimalLongitude',
colsp = 'speciescheck',
bbox = db,
minpts = 10)
bxout <- distboxplot(data = refdata[['Salmo trutta']], var = 'bio6', output='outlier')
} # }