Skip to contents

Distribution boxplot

Usage

distboxplot(
  data,
  var,
  output,
  p1 = 0.025,
  p2 = 0.975,
  boot = FALSE,
  pc = FALSE,
  pcvar = NULL
)

Arguments

data

Dataframe or vector where to check outliers.

var

Variable to be used for outlier detection if data is not a vector file.

output

Either clean: for clean data output without outliers; outliers: for outlier data frame or vectors.

p1, p2

Different pvalues for outlier detection Schwertman et al. 2004).

boot

Whether bootstrapping will be computed. Default FALSE

pc

Whether principal component analysis will be computed. Default FALSE

pcvar

Principal component analysis to e used for outlier detection after PCA. Default PC1

Value

Either clean or outliers.

Examples


if (FALSE) { # \dontrun{

data("efidata")

gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)

danube <- system.file('extdata/danube.shp.zip', package='specleanr')

db <- sf::st_read(danube, quiet=TRUE)

wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))

refdata <- pred_extract(data = gbd, raster= wcd , lat = 'decimalLatitude', lon= 'decimalLongitude',
                          colsp = 'speciescheck',
                          bbox = db,
                          minpts = 10)

 bxout <- distboxplot(data = refdata[['Salmo trutta']], var = 'bio6', output='outlier')
} # }