Identifies outliers using Reverse Jackknifing method based on Chapman et al., (2005).
Source:R/outliermethods.R
jknife.Rd
Identifies outliers using Reverse Jackknifing method based on Chapman et al., (2005).
Usage
jknife(
data,
var,
output = "outlier",
mode = "soft",
pc = FALSE,
pcvar = NULL,
boot = FALSE
)
Arguments
- data
Dataframe to check for outliers
- var
Variable considered in flagging suspicious outliers.
- output
Either clean: for data frame with no suspicious outliers or outlier: to return data frame with only outliers
- mode
Either robust, if a robust mode is used which uses median instead of mean and median absolute deviation from median or mad instead of standard deviation.
- pc
Whether principal component analysis will be computed. Default
FALSE
- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1
- boot
Whether bootstrapping will be computed. Default
FALSE
Details
Reverse jackknifing was specifically developed to detect error climate profiles (Chapman 1991, 1999)
.
The method has been applied in detecting outliers in environmental data (García-Roselló et al. 2014; Robertson et al. 2016)
and incorporated in the DIVAS-GIS software (Hijmans et al. 2001)
.
References
Chapman AD. 1991. Quality control and validation of environmental resource data in Data Quality and Standards. Pages 1-23. Canberra. Available from https://www.researchgate.net/publication/332537824.
Chapman AD. 1999. Quality Control and Validation of Point-Sourced Environmental Resource Data. eds. . Chelsea,. Pages 409-418 in Lowell K, Jaton A, editors. Spatial accuracy assessment: Land information uncertainty in natural resources, 1st edition. MI: Ann Arbor Press., Chelsea.
Examples
if (FALSE) { # \dontrun{
data("efidata")
gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = gbd, raster= wcd ,
lat = 'decimalLatitude',
lon= 'decimalLongitude',
colsp = 'speciescheck',
bbox = db,
minpts = 10)
jkout <- jknife(data = refdata[['Salmo trutta']], var = 'bio6', output='outlier')
} # }