Identifies outliers using Reverse Jackknifing method based on Chapman et al., (2005).
Source:R/outliermethods.R
jknife.RdIdentifies outliers using Reverse Jackknifing method based on Chapman et al., (2005).
Usage
jknife(
data,
var,
output = "outlier",
mode = "soft",
pc = FALSE,
pcvar = NULL,
boot = FALSE
)Arguments
- data
Dataframe to check for outliers
- var
Variable considered in flagging suspicious outliers.
- output
Either clean: for data frame with no suspicious outliers or outlier: to return data frame with only outliers
- mode
Either robust, if a robust mode is used which uses median instead of mean and median absolute deviation from median or mad instead of standard deviation.
- pc
Whether principal component analysis will be computed. Default
FALSE- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1- boot
Whether bootstrapping will be computed. Default
FALSE
Details
Reverse jackknifing was specifically developed to detect error climate profiles (Chapman 1991, 1999).
The method has been applied in detecting outliers in environmental data (García-Roselló et al. 2014; Robertson et al. 2016)
and incorporated in the DIVAS-GIS software (Hijmans et al. 2001).
References
Chapman AD. 1991. Quality control and validation of environmental resource data in Data Quality and Standards. Pages 1-23. Canberra. Available from https://www.researchgate.net/publication/332537824.
Chapman AD. 1999. Quality Control and Validation of Point-Sourced Environmental Resource Data. eds. . Chelsea,. Pages 409-418 in Lowell K, Jaton A, editors. Spatial accuracy assessment: Land information uncertainty in natural resources, 1st edition. MI: Ann Arbor Press., Chelsea.
Examples
# \donttest{
data("efidata")
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = efidata, raster= wcd ,
lat = 'decimalLatitude',
lon= 'decimalLongitude',
colsp = "scientificName",
bbox = db,
minpts = 10)
jkout <- jknife(data = refdata[["Thymallus thymallus"]], var = 'bio6', output='outlier')
# }