Mixed Interquartile range and semiInterquartile range Walker et al., 2018
Source: R/outliermethods.R
mixediqr.RdMixed Interquartile range and semiInterquartile range Walker et al., 2018
Arguments
- data
Dataframe or vector where to check outliers.
- var
Variable to be used for outlier detection if data is not a vector file.
- output
Either clean: for clean data output without outliers; outliers: for outlier data frame or vectors.
- x
A constant for flagging outliers
Walker et al., 2018).- pc
Whether principal component analysis will be computed. Default
FALSE- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1- boot
Whether bootstrapping will be computed. Default
FALSE
References
Walker ML, Dovoedo YH, Chakraborti S, Hilton CW. 2018. An Improved Boxplot for Univariate Data. American Statistician 72:348-353. American Statistical Association.
Examples
# \donttest{
data("efidata")
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = efidata, raster= wcd ,
lat = 'decimalLatitude', lon= 'decimalLongitude',
colsp = "scientificName",
bbox = db,
minpts = 10)
logout <- mixediqr(data = refdata[["Thymallus thymallus"]], var = 'bio6', output='outlier')
# }