Skip to contents

Mixed Interquartile range and semiInterquartile range Walker et al., 2018

Usage

mixediqr(data, var, output, x = 3, pc = FALSE, pcvar = NULL, boot = FALSE)

Arguments

data

Dataframe or vector where to check outliers.

var

Variable to be used for outlier detection if data is not a vector file.

output

Either clean: for clean data output without outliers; outliers: for outlier data frame or vectors.

x

A constant for flagging outliers Walker et al., 2018).

pc

Whether principal component analysis will be computed. Default FALSE

pcvar

Principal component analysis to e used for outlier detection after PCA. Default PC1

boot

Whether bootstrapping will be computed. Default FALSE

Value

Either clean our outliers

References

Walker ML, Dovoedo YH, Chakraborti S, Hilton CW. 2018. An Improved Boxplot for Univariate Data. American Statistician 72:348-353. American Statistical Association.

Examples

if (FALSE) { # \dontrun{

data("efidata")

gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)

danube <- system.file('extdata/danube.shp.zip', package='specleanr')

db <- sf::st_read(danube, quiet=TRUE)

wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))

refdata <- pred_extract(data = gbd, raster= wcd , lat = 'decimalLatitude', lon= 'decimalLongitude',
                          colsp = 'speciescheck',
                          bbox = db,
                          minpts = 10)

 logout <- mixediqr(data = refdata[['Salmo trutta']], var = 'bio6', output='outlier')
} # }