Identify outliers using One Class Support Vector Machines
Arguments
- data
Dataframe of environmental variables extracted from where the species was recorded present or absent.
- kernel
Either radial, linear
- tune
To performed a tuned version of one-class svm. High computation requirements needed.
- exclude
Exclude variables that should not be considered in the fitting the one class model, for example x and y columns or latitude/longitude or any column that the user doesnot want to consider.
- output
Either clean: for a dataset with no outliers or outlier: to output a dataframe with outliers.
- tpar
A list of parameters to be varied during tunning from the normal model.
- boot
Whether bootstrapping will be computed. Default
FALSE
- pc
Whether principal component analysis will be computed. Default
FALSE
- var
The variable of concern, which is vital for univariate outlier detection methods
- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1
Examples
if (FALSE) { # \dontrun{
data("efidata")
gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = gbd, raster= wcd ,
lat = 'decimalLatitude',
lon= 'decimalLongitude',
colsp = 'speciescheck',
bbox = db,
minpts = 10)
nedata <- onesvm(data = refdata[['Salmo trutta']], exclude = c("x", "y"), output='outlier')
} # }