Computes semi-interquantile range to flag suspicious outliers
Arguments
- data
Dataframe to check for outliers
- var
Environmental parameter considered in flagging suspicious outliers
- output
Either clean: for dataframe with no suspicious outliers or outlier: to retrun dataframe with only outliers
- x
A constant to create a fence or boundary to detect outliers.
- pc
Whether principal component analysis will be computed. Default
FALSE- pcvar
Principal component analysis to e used for outlier detection after PCA. Default
PC1- boot
Whether bootstrapping will be computed. Default
FALSE
Details
SemiInterquantile Ranges introduced adjusts for whiskers on either
side to flag suspicious outliers [Q1 – 3(Q2 (median) - Q1); Q3 + 3(Q3 - Q2)] ((Kimber 1990)).
However, SIQR introduced the same constant values for bounding fences
for the lower and upper quartiles (Rousseeuw & Hubert 2011), which leads to
outlier swamping and masking.
References
Kimber AC. 1990. Exploratory Data Analysis for Possibly Censored Data From Skewed Distributions. Page Source: Journal of the Royal Statistical Society. Series C (Applied Statistics).
Examples
# \donttest{
data("efidata")
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))
refdata <- pred_extract(data = efidata, raster= wcd ,
lat = 'decimalLatitude', lon= 'decimalLongitude',
colsp = "scientificName",
bbox = db,
minpts = 10)
semiout <- semiIQR(data = refdata[["Thymallus thymallus"]], var = 'bio6', output='outlier')
# }