Skip to contents

Flags suspicious using the local outlier factor or Density-Based Spatial Clustering of Applications with Noise.

Usage

xlof(
  data,
  output,
  minPts,
  exclude = NULL,
  metric = "manhattan",
  mode = "soft",
  pc = FALSE,
  boot = FALSE,
  var,
  pcvar = NULL
)

Arguments

data

Data frame of species records with environmental data

output

Either clean: for data frame with no suspicious outliers or outlier: to return dataframe with only outliers.

minPts

Minimum neighbors around the records.

exclude

Exclude variables that should not be considered in the fitting the one class model, for example x and y columns or latitude/longitude or any column that the user doesn't want to consider.

metric

Distance-based measure to examine the distance between variables. Default manhattan.

mode

Either soft if mean is used or robust if mad is used. Default soft.

pc

Whether principal component analysis will be computed. Default FALSE

boot

Whether bootstrapping will be computed. Default FALSE

var

The variable of concern, which is vital for univariate outlier detection methods

pcvar

Principal component analysis to e used for outlier detection after PCA. Default PC1

Value

Dataframe with or with no outliers.

Examples


if (FALSE) { # \dontrun{

data("efidata")

gbd <- check_names(data = efidata, colsp='scientificName', pct=90, merge=TRUE)

danube <- system.file('extdata/danube.shp.zip', package='specleanr')

db <- sf::st_read(danube, quiet=TRUE)

wcd <- terra::rast(system.file('extdata/worldclim.tiff', package='specleanr'))

refdata <- pred_extract(data = gbd, raster= wcd ,
                       lat = 'decimalLatitude',
                       lon= 'decimalLongitude',
                       colsp = 'speciescheck',
                      bbox = db,
                       minpts = 10)

lofout <- xlof(data = refdata[['Salmo trutta']], exclude = c("x", "y"),
                output='outlier', metric ='manhattan',
                minPts = 10, mode = "soft")
} # }