Identify best method for outlier removal for multiple species using majority votes.
Source:R/bestmethod.R
multibestmethod.RdIdentify best method for outlier removal for multiple species using majority votes.
Arguments
- x
Output from the outlier detection.
- threshold
value to consider whether the outlier is an absolute outlier or not.
- warn
If TRUE, warning on whether absolute outliers obtained at a low threshold is indicated. Default FALSE.
- verbose
Produce messages on the process or not. Default FALSE.
- autothreshold
Identifies the threshold with mean number of absolute outliers.The search is limited within 0.51 to 1 since thresholds less than are deemed inappropriate for identifying absolute outliers. The autothreshold is used when
thresholdis set toNULL.
Examples
# \donttest{
danube <- system.file('extdata/danube.shp.zip', package='specleanr')
db <- sf::st_read(danube, quiet=TRUE)
wcd <- terra::rast(system.file('extdata/worldclim.tiff', package = "specleanr"))
preddata <- pred_extract(data = efidata, raster = wcd,
lat = 'decimalLatitude', lon = 'decimalLongitude',
colsp = 'scientificName',
list = TRUE,verbose = FALSE,
minpts = 6,merge = FALSE)#'basin removed
#outlier detection
outliersdf <- multidetect(data = preddata, multiple = TRUE,
var = 'bio6',
output = 'outlier',
exclude = c('x','y'),
methods = c('zscore', 'adjbox','iqr', 'semiqr','hampel', 'kmeans',
'logboxplot', 'lof','iforest', 'mahal', 'seqfences'))
multbm <- multibestmethod(x = outliersdf, threshold = 0.2)#
# }